Improved model of hydrated calcium ion for molecular dynamics simulations using classical biomolecular force fields.
نویسندگان
چکیده
Calcium ions (Ca(2+) ) play key roles in various fundamental biological processes such as cell signaling and brain function. Molecular dynamics (MD) simulations have been used to study such interactions, however, the accuracy of the Ca(2+) models provided by the standard MD force fields has not been rigorously tested. Here, we assess the performance of the Ca(2+) models from the most popular classical force fields AMBER and CHARMM by computing the osmotic pressure of model compounds and the free energy of DNA-DNA interactions. In the simulations performed using the two standard models, Ca(2+) ions are seen to form artificial clusters with chloride, acetate, and phosphate species; the osmotic pressure of CaAc2 and CaCl2 solutions is a small fraction of the experimental values for both force fields. Using the standard parameterization of Ca(2+) ions in the simulations of Ca(2+) -mediated DNA-DNA interactions leads to qualitatively wrong outcomes: both AMBER and CHARMM simulations suggest strong inter-DNA attraction whereas, in experiment, DNA molecules repel one another. The artificial attraction of Ca(2+) to DNA phosphate is strong enough to affect the direction of the electric field-driven translocation of DNA through a solid-state nanopore. To address these shortcomings of the standard Ca(2+) model, we introduce a custom model of a hydrated Ca(2+) ion and show that using our model brings the results of the above MD simulations in quantitative agreement with experiment. Our improved model of Ca(2+) can be readily applied to MD simulations of various biomolecular systems, including nucleic acids, proteins and lipid bilayer membranes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 752-763, 2016.
منابع مشابه
Estimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کاملMolecular dynamics simulation of hydrated DPPC monolayers using charge equilibration force fields
We present results of molecular dynamics simulations of a model DPPC-water monolayer using charge equilibration (CHEQ) force fields, which explicitly account for electronic polarization in a classical treatment of intermolecular interactions. The surface pressure, determined as the difference between the monolayer and pure water surface tensions at 323 K, is predicted to be 22.92 ±1.29 dyne/cm,...
متن کاملRecent Advances in Polarizable Force Fields for Macromolecules: Microsecond Simulations of Proteins Using the Classical Drude Oscillator Model
In this Perspective, we summarize recent efforts to include the explicit treatment of induced electronic polarization in biomolecular force fields. Methods used to treat polarizability, including the induced dipole, fluctuating charge, and classical Drude oscillator models, are presented, including recent advances in force fields using those methods. This is followed by recent results obtained ...
متن کاملMolecular simulations of ion channels: a quantum chemist’s perspective
Molecular dynamics (MD) has become a popular method to study ion channels by theoretical means and to provide new insights into their fundamental properties, such as fast conduction and ion specificity. This Perspective deals with one of the current challenges of biomolecular MD studies: the accurate description of polarization. Polarization can be defined as the spatial changes in charge distr...
متن کاملOn validity of current force fields for simulations on boron nitride nanotubes
Past molecular dynamics studies of boron-nitride nanotubes have used van der Waals parameters from generic force fields, combined with various values for the partial charges on the boron and nitrogen atoms. This paper explores the validity of these parameters by first using quantum chemical packages CPMD and Gaussian to compute partial charges for isolated and periodic boron nitride nanotubes, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biopolymers
دوره 105 10 شماره
صفحات -
تاریخ انتشار 2016